(x^2/12)+(43-2x)=90

Simple and best practice solution for (x^2/12)+(43-2x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2/12)+(43-2x)=90 equation:



(x^2/12)+(43-2x)=90
We move all terms to the left:
(x^2/12)+(43-2x)-(90)=0
We add all the numbers together, and all the variables
(x^2/12)+(-2x+43)-90=0
We get rid of parentheses
x^2/12-2x+43-90=0
We multiply all the terms by the denominator
x^2-2x*12+43*12-90*12=0
We add all the numbers together, and all the variables
x^2-2x*12-564=0
Wy multiply elements
x^2-24x-564=0
a = 1; b = -24; c = -564;
Δ = b2-4ac
Δ = -242-4·1·(-564)
Δ = 2832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2832}=\sqrt{16*177}=\sqrt{16}*\sqrt{177}=4\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{177}}{2*1}=\frac{24-4\sqrt{177}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{177}}{2*1}=\frac{24+4\sqrt{177}}{2} $

See similar equations:

| y/2+7/10=-4/5 | | 9x+14=22 | | 9x+-14=22 | | 2x^2-6+-3=0 | | 6-2(x-2)=-2(3-x) | | y/3+4/15=-2/5 | | 32=x4*4 | | 2x+-17=13 | | 12/​11=p/12 | | x+5/6=2x-5/8 | | Y=x(2x-5)(2x+7) | | 3(3n+4)=8(8n+8)+1 | | 4m+8=92-2 | | 2-3/4k=1/8k+19 | | 12=5t-4.9t^2 | | .75m+1.75=4.75 | | 71/2=2x+5(11/5) | | r+2r-13=25 | | x/2+20=8 | | 3r=5r-14 | | 3k-3k=-4k-12 | | (X-2)^2+(y+1)^2=5^2 | | 2x^2+8x-50=0 | | 1-n=-2n+7 | | 8^2x-1=32 | | 3v+13=58 | | x/7+x=5/14 | | -2x^2+16x-6=0 | | 32-3c-4=2c+10+c | | 0.9(x+50)+0.3x=81 | | 4+4=(5n+6)-n | | 25x^2-10x+98=0 |

Equations solver categories